

 A virtual function is a member function which is declared within a
base class and is re-defined(Overridden) by a derived class.

 When you refer to a derived class object using a pointer or a
reference to the base class, you can call a virtual function for that reference to the base class, you can call a virtual function for that
object and execute the derived class’s version of the function.

 Virtual functions ensure that the correct function is called for an
object, regardless of the type of reference (or pointer) used for
function call.

 They are mainly used to achieve Runtime polymorphism
Functions are declared with a virtual keyword in base class. Functions are declared with a virtual keyword in base class.

 The resolving of function call is done at Run-time.

 Virtual functions cannot be static.
 A virtual function can be a friend function of another class.
 Virtual functions should be accessed using pointer or

reference of base class type to achieve run time
polymorphism.polymorphism.

 The prototype of virtual functions should be the same in the
base as well as derived class.

 They are always defined in the base class and overridden in a
derived class. It is not mandatory for the derived class to
override (or re-define the virtual function), in that case, the override (or re-define the virtual function), in that case, the
base class version of the function is used.

 A class may have virtual destructor but it cannot have a virtual
constructor.

#include <iostream>
using namespace std;

class base {
public:

virtual void print()

class derived : public base
{
public:
void print()
{
cout << "print derived class" << endl;virtual void print()

{
cout << "print base class" << endl;
}

void show()
{

cout << "print derived class" << endl;
}

void show()
{
cout << "show derived class" << endl;
}{

cout << "show base class" << endl;
}

};

}
};

int main()
{

base* bptr;
derived d;
bptr = &d;bptr = &d;

// virtual function, binded at runtime
bptr->print();

// Non-virtual function, binded at compile time
bptr->show();

}

