VIRTUAL FUNCTION
IN C++

VIRTUAL FUNCTION IN C++ |

® A virtual function is a member function which is declared within a
base class and is re-defined(Overridden) by a derived class.

® When you refer to a derived class object using a pointer or a
reference to the base class, you can call a virtual function for that
object and execute the derived class’s version of the function.

® Virtual functions ensure that the correct function is called for an
object, regardless of the type of reference (or pointer) used for
function call.

® They are mainly used to achieve Runtime polymorphism
® Functions are declared with a virtual keyword in base class.
® The resolving of function call is done at Run-time.

® Virtual functions cannot be static.
® A virtual function can be a friend function of another class.

@ Virtual functions should be accessed using pointer or
reference of base class type to achieve run time
polymorphism.

® The prototype of virtual functions should be the same in the
base as well as derived class.

® They are always defined in the base class and overridden in a
derived class. It is not mandatory for the derived class to
override (or re-define the virtual function), in that case, the
base class version of the function is used.

@ A class may have virtual destructor but it cannot have a virtual
constructor.

#include <iostream> class derived : public base
using namespace std; {
o]¥] o] 1ok
class base { void print()
public: {
virtual void print() cout << "print derived class" << end];
{ }
cout << "print base class" << endl;
} void show()
{
void show() cout << "show derived class" << end|;
{ }
cout << "show base class" << end|; 1
}

-
int main()

{
base* bptr;
derived d;
bptr = &d;

// virtual function, binded at runtime
bptr->print();

V. V.V

// Non-virtual function, binded at compile time
bptr->show();

J

